Chem 116

Lecture 7 - September 23, 2008 (EC)

How Intermolecular Forces Explain Behaviors of Particles in Condensed Phases (Liquids & Solids)

Clicker question (top of page 2):

- a) CCI_4 CI-C-CI CI
- H b) CH₃OH H-C-O-H H
- c) CH_3OCH_3 H-C-O-C-H H H
- d) CO₂ O-C-O

*CH₃OH and CH₃OCH₃ both have Hydrogen in them but when the Lewis structures are drawn, there is only Hydrogen bonding in the CH₃OH since the O in CH₃OCH₃ is bonded to 2 Carbon atoms. (Hydrogen bonding only occurs between H and N, O, F, and Cl atoms)

*Since hydrogen bonding is the strongest of the 3 types of intermolecular forces, b is the answer.

3 Types of intermolecular forces:

- 1. London dispersion force
 - a. Weakest of the 3 if in small molecule, but actually very strong in large molecules
 - b. Occurs between all molecules
 - c. Larger molecules have larger dispersion forces
- 2. Dipole-Dipole force
 - a. Occurs between polar molecules
 - b. Smaller polar molecules have larger dipole attractions
- 3. Hydrogen bond
 - a. Occurs between H atoms with N, O, F, and Cl atoms

Things that increase the degree of polarity in a molecule:

- 1. The charges of the atoms of the molecule make the molecule polar
 - a. H₂S,and CH₃Cl being polar because of the charges
 - b. CH₄ being non polar because of the charges being neutral charge and the symmetric Lewis structure
- 2. The number of polar bonds
 - a. CH₃Cl has only 1 negative Cl polar bond (somewhat polar)
 - b. CH₃Cl₂ has 2 negative Cl polar bonds (more polar than CH₃Cl)
- 3. If they are lons or not
 - a. Ions form a especially strong Coulomb force due to their charges
 - b. NaCl (which is Na⁺Cl⁻ ions), and NH₄Cl, and NH₄NO₃ are examples of ionic compounds that have ionic forces of attraction holding the ions together in the solid state. Also hold ions together in the liquid ("molten") state.
 - c. If they are ions
 - i. An increase in the distance between the ion-ion molecules reduces the charge
 - 1. So larger the molecules, the smaller the ionic charge
 - 2. HCl (Cl is larger, wants e less) would be less polar than HF because Cl is less electronegative than F (smaller wants e more)
 - ii. The number of positive or negative charges
 - 1. A +2 -1 ionic bond would have a stronger attraction than a +1 -1 ion
- 4. If they're Hydrogen bonding or not
 - a. Hydrogen bonds are a special type of very strong dipole-dipole force with their own name
 - b. Only happens when hydrogen bonds with N, O, F, or Cl (book leaves out Cl)
 - c. Examples of Hydrogen bonds
 - i. H<mark>Cl</mark>
 - ii. H₂O
 - iii. CH₃CO<mark>O</mark>H
 - iv. NH₃
 - v. NH₂Cl
 - d. CH₃-O-CH₃ Is not a type of hydrogen bonding b/c the H's are only bonded to the C's (not to N, O, F, or Cl)
 - e. In the follow acids
 - i. C₁₁H₂₃CO<mark>OH</mark> 44°C melting point
 - ii. C₁₃H₂₇CO<mark>OH</mark> 58°C melting point
 - iii. C₁₅H₃₁CO<mark>OH</mark> 63°C melting point
 - iv. C₁₇H₃₅CO<mark>OH</mark> 70°C melting point
 - 1. Hydrogen bonding is not the cause of the increase in melting point because they all have the same OH hydrogen bonds.
 - 2. The increase in the size of the molecules causes their dispersion forces to be greater, and therefore greater melting point.